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Summary

A multiagent system is considered, which is tasked with the objective of
approaching a predetermined target from a desired region to minimize detec-
tion and then simultaneously converge at the target. The considered cooperative
timing problem consists of 2 stages: navigation and simultaneous arrival. During
the navigation stage, the agents are driven from a distant starting point toward
the target while restricting their motion within a desired area. Only a few agents
(ie, leaders) are equipped with the desired bearing information to the target,
whereas the remaining agents (ie, followers) may only have local feedback with
neighboring agents to coordinate their headings. No range information to the
target and no absolute or other relative position information among agents are
available. The arrival stage begins when agents enter a neighborhood of the tar-
get (ie, range information becomes available during the arrival stage), and agents
coordinate their motion to perform simultaneous arrival. The agents could expe-
rience random loss of communication with immediate neighbors, which results
in a stochastic communication network. On the basis of the random communi-
cation network, balanced containment control is developed, which almost surely
restricts the motion of the group within a desired region while equally spacing
the agents. An almost sure consensus algorithm is designed for agents to coordi-
nate the simultaneous arrival time by achieving a consensus on informed agents
during the arrival stage. Simulation results demonstrate the performance of the
developed approach.

KEYWORDS

balanced containment control, cooperative timing, random communication graphs

1 INTRODUCTION

In multiagent systems, agents communicate their position and/or velocity information with others to coordinate their
behaviors.1-5 The availability of the position information of the agents is always assumed in navigation and coordina-
tion. Continuous information exchange among agents over a reliable communication network is also a widely adopted
assumption in these applications. However, position information may not be available in all cases, eg, autonomous vehi-
cles operating in GPS-denied environments. For some applications, because of obstacles and interference, agents can
experience random loss of communication with other team members. Hence, developing a cooperative controller to
perform collective tasks for a multiagent system over random communication networks can be challenging.
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A multiagent cooperative timing problem is considered in this paper. Example military applications of cooperative tim-
ing include reaching the boundary of a radar detection area by unmanned aerial vehicles at the same time to complete
desired military missions6 or performing simultaneous strike by munitions with the objective of simultaneous target
arrival.7 Cooperative timing problems are also applicable to civilian applications such as refueling scenarios and haz-
ardous material monitoring.8 Motivated by cooperative timing applications, a multiagent system is tasked in this paper
with the objective of simultaneous arrival at a predefined target while approaching the target from a desired region. The
main challenges in the considered problem include intermittent communication and inconsistent information exchange
among agents due to the terrain and obstacles, limited availability of team members' states within an uncertain complex
environment, and the coordination of agents motion in performing simultaneous arrival.

Numerous results on rendezvous problems can be found in the literature.9-15 Synchronized and unsynchronized strate-
gies are developed for a group of autonomous mobile agents to ensure convergence at a common point by only using
position feedback from sensing regions.9-11 The rendezvous problem for mobile agents with nonholonomic constraints
is considered by Dimarogonas and Kyriakopoulos.12 A hybrid dynamic rendezvous protocol is designed to address
finite-time rendezvous problems.13 However, the agents in the literature9-13 can only converge to a common setpoint deter-
mined by the initial deployment of the group rather than a predefined destination. Moreover, cooperative timing is not
considered in the literature9-13 which implies that the agents may not arrive at the common setpoint at the same time.
To achieve simultaneous arrival at the desired destination, a distributed potential field-based approach is developed for
a leader-follower network by requiring followers to achieve consensus with leaders, where leaders are the only agents
with knowledge of the destination.14 The coordinated arrival problem is studied, where agents are controlled to reach
the targets either simultaneously or in a given time sequence.16 Despite the consideration of simultaneous arrival, the
aforementioned results are all developed on the basis of the deterministic communication networks that allow consistent
information exchange between agents. Such results do not consider random failures of interagent communication when
operating in an uncertain complex environment where communication may be actively inhibited.

Consensus problems over random graphs are the focus of the current research. Assuming that the communication links
between any pair of agents are activated independently with a common probability, an almost sure consensus is estab-
lished by Hatano and Mesbahi,17 which is then extended from undirected random graphs to a general class of directed
random graphs.18,19 Necessary and sufficient conditions for consensus are developed by Tahbaz-Salehi and Jadbabaie20,21

for graphs that are generated by ergodic and stationary random processes. Mean square average consensus and almost
sure consensus over time-varying topologies with communication noise are investigated in the works of Tahbaz-Salehi
and Jadbabaie22 and Kar and Moura.23 When considering Markovian switching topologies, sufficient conditions for mean
square and almost sure consensus are developed for linear multiple-input–multiple-output multiagent systems.24 How-
ever, most of the aforementioned convergence results are developed for leaderless networks, and only a few results
consider constrained consensus (eg, balanced containment control as in this work).

On the basis of the preliminary efforts,25 the cooperative timing problem in this paper consists of 2 stages: navigation and
simultaneous arrival. The navigation stage aims to drive the group of agents from a distant starting point toward the target
while restricting their motion within a desired area. The simultaneous arrival stage is then activated to coordinate the
agents' motion to perform simultaneous arrival when the agents enter a neighborhood of the target. During the navigation
stage, it is assumed that agents are only aware of the orientation to the target. No range information to the target and no
absolute or other relative position information among agents are available. Only a few agents (ie, leaders) are equipped
with the desired bearing information to the target, whereas the remaining agents (ie, followers) may only have local
feedback with neighboring agents to coordinate their headings. It is further assumed that the agents may experience
random loss of communication with immediate neighbors, which results in a stochastic communication network. When
approaching the target within a desired area (eg, a circular sector), the agents are also required to be equally spaced around
the sector to optimize mission performance. The arrival stage begins when agents are close enough to use short-range
sensors (eg, camera or Lidar) to estimate the distance to the target (ie, range information becomes available during the
arrival stage), and their speed with neighboring agents are coordinated over the random communication network to
perform simultaneous arrival.

Compared with the classical containment control over deterministic communication networks26-30 that focus on driving
the follower agents to a desired region (eg, a convex hull) determined by the leaders, this work aims to achieve balanced
containment control over stochastic communication networks. Rather than assuming constant interagent information
exchange, the random network considered in the current work can be used to model a large class of real-world networks
to reflect the unpredictable and time-varying nature of the underlying communication network in a complex environ-
ment. A decentralized control algorithm is developed to not only ensure that the agents move within the desired circular
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FIGURE 1 The problem scenario describing simultaneous arrival of N agents at a predefined target. The group of agents is required to be
equally spaced in the sense that the relative orientations between 2 agents is equal and move within a desired circular sector toward the
target. The interaction of agents is modeled as a directed graph, where the edges are indicated by dashed lines

sector but also to ensure that the agents are equally spaced within the sector. To achieve simultaneous arrival, under
the constraint that only leaders are informed of the desired common arrival time, a consensus algorithm is designed for
agents to coordinate their arrival time. Moreover, the developed controller allows the agents to simultaneously arrive at
any desired destination versus at any arbitrary destination without cooperative timing.9-13,31,32

2 PROBLEM FORMULATION

A group of N agents is tasked to simultaneously arrive at a predefined stationary destination as illustrated in Figure 1.
Let  denote an inertial polar coordinate reference frame. Without loss of generality, the target is assumed to be at the
origin of  . Consider a time sequence tk = kΔ, k ∈ Z+, with Δ ∈ R+ being a sampling period. The agents' states evolve
according to the discrete kinematics* as

𝜌i(k + 1) = 𝜌i(k) − vi(k)Δ,
𝜃i(k + 1) = 𝜃i(k) + 𝜔i(k)Δ,

i = 1, · · · ,N, (1)

where 𝜌i(k) ∈ R+ denotes the distance from agent i to the target, 𝜃i(k) ∈ [0, 2𝜋) denotes its orientation measured with
respect to the target and the common north, and vi(k) ∈ R+ and 𝜔i(k) ∈ R are the control inputs.

The considered cooperative timing problem consists of 2 stages: navigation and simultaneous arrival. During navigation,
the agents are assumed to move with constant linear velocities vi. Although the orientation to the target (ie, 𝜃i) is available
to the agents, no range information to the target (ie, 𝜌i) and no absolute or other relative position information among
agents are available during the navigation stage. It is further assumed that only a small set of agents (ie, leaders) are
informed of the desired bearing information to the target, where the remaining agents (ie, followers) can only use local
feedback with neighboring agents to coordinate their headings. In addition, agents are required to approach the target
within a desired area defined by a circular sector while equally spaced in terms of their relative orientations (ie, 𝜃2 − 𝜃1 =
… = 𝜃N − 𝜃N−1) to optimize the mission performance. During the simultaneous arrival stage, after the agents are driven

*The primary contribution of this work is in the cooperative timing, and known methods can be used to compensate for more complex kinematics/
dynamics of the agent. To specifically focus on this contribution, the methods (like other such results in literature) are developed on the basis of the
single-integrator kinematics.
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to the neighborhood of the target where the agents can estimate the range information to the target, cooperative timing
among agents is performed by communicating the estimated arrival time and controlling the velocity of the agents.

2.1 Directed random graph
The group of agents is assumed to communicate and exchange 𝜃i over a wireless network. Since the agents may experi-
ence unexpected communication failure with neighboring agents in a complex and unreliable environment, the wireless
network is modeled as a time-varying graph 𝜃(t) = ( , 𝜃(t)), where the node set  represents agents and the edge set
𝜃(t) ⊆  ×  indicates the directed orientation exchange between agents at time t. At each time instant, suppressing
the time dependence, the graph 𝜃 is a directed random graph. The time-varying graph 𝜃(t) consists of a time sequence
of directed random graphs in which the edge connections vary randomly with time. In particular, associated with each
agent i, let there be a Bernoulli random variable 𝛿i such that 𝛿i = 1 indicates that agent i is able to communicate with its
neighbors and 𝛿i = 0 indicates failed communication. The stochastic processes {𝛿i(t)} are assumed to evolve according to
a 2-state continuous-time homogeneous Markov process (see chapter 6 in the work of Grimmett and Stirzaker33), where
the transition rates between the state 𝛿i = 0 and 𝛿i = 1 at agent i can be specified as 𝜆(i)0,1 > 0. It is further assumed that,
for different agents, the {𝛿i(t)} are statistically independent.

Assumption 1. The random processes {𝛿i(t)} do not change infinitely fast, and the sampling time Δ is selected such
that 𝛿i(t) = 𝛿i(t + t0) if 0 ≤ t0 < Δ, ∀i ∈  .

Note that Assumption 1 will be true in many real systems. For example, let T0 and T1 denote the expected dwell times
in states 0 and 1 for the Markov process 𝛿i(t), respectively. Then, the probability of staying in the same state during an
observation period can be made arbitrarily large by selecting an appropriate Δ (eg, the probability of remaining in state 0
during an interval of length Δ is e−Δ∕T0 ).

Assumption 1 indicates that the graph 𝜃(t) remains constant over each time interval [tk, tk+1). Let 𝜃(k) denote the
random graph 𝜃(t) at t = tk. Note that 𝜃(k) is drawn from a finite sample space ̄𝜃 ≜ {1

𝜃
, … ,M

𝜃
}, M ∈ Z+, and|̄𝜃| ≤ 2||, which is determined by the power set of  . Note that || and |̄𝜃| denote the cardinality of the set  and ̄𝜃 ,

respectively. Note that the graphs i
𝜃
∈ ̄𝜃 , i = {1, … ,M}, are directed graphs, which share a common node set  and

differ in the edge set due to the random variable 𝛿i. The subsequent development is based on the availability of 2 leaders.†
Specifically, the leader set is defined as L = {1,N}, and the follower set is defined as F = {2, … ,N − 1}, where the
leaders move with desired immutable orientations, 𝜃1 and 𝜃N, such that 𝜃1 < 𝜃N, which determines the desired region
as shown in Figure 1. The followers can only communicate with neighboring agents and update their orientations over
the random communication graph 𝜃(k). Let ∗

𝜃
∈ ̄𝜃 be the graph where all agents are able to communicate with their

immediate neighboring agents (ie, 𝛿i = 1 for ∀i ∈ ). To ensure that the followers approach the target within a desired
region determined by the leaders over the directed random network, the following assumptions are made.

Assumption 2. ∗
𝜃
∈ ̄𝜃 and Pr(𝜃(k) = ∗

𝜃
) > 0 for all k, where Pr(⋄) denotes the probability that the event ⋄ occurs.

Assumption 3. In ∗
𝜃
, the leaders have directed paths to every follower and each follower can exchange orientation

information with its immediate neighbors (ie, node i − 1 and i + 1 for follower i).

Assumption 2 will be true in many real systems if the Markov processes {𝛿i(t)} for the different nodes are statistically
independent. Assumption 3 indicates that the underlying communication graph contains a line graph, where leaders in
L act as the roots in ∗

𝜃
and their states can be delivered to all the nodes through a connected path. In our work, since

one objective is to achieve balanced heading for each agent i with respect to its immediate neighbors, such a line graph
assumption enables information exchange of follower i with its neighbors i − 1 and i + 1 and is necessary for mission
completion. The line graph assumption is not a strong assumption for multiagent systems and has been widely used in
the literature. For example, the line graph assumption has been applied in the works of Marshall et al34 and Zheng et al35

to perform cyclic pursuit or circular formation. Assumption 3 does not limit the underlying communication graph to be
an exact line graph. A general communication graph could also be applied as long as the general communication graph
contains a line graph as described in Assumption 3.

†The developed approach is not limited to the particular case that the convex hull is a line segment [𝜃1, 𝜃N], which only requires 2 leaders. If a multidi-
mensional convex hull is considered,26-30 our approach can be extended to achieve balanced deployment of followers within the convex hull formed by
more than 2 leaders.
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To avoid notational confusion, let 𝜃(k) ≜ [𝜃1(k), … , 𝜃N(k)]T and Θ(k) ≜ [Θ1(k), … ,ΘN(k)]T denote the stacked deter-
ministic states 𝜃i(k) and the stacked corresponding random variables Θi(k), respectively, for all i ∈  at time k. Because
of the random variable 𝛿i(k) associated with each agent, the second equation in (1) is rewritten for each follower as

Θi(k + 1) = Θi(k) + Δ𝛿i(k)𝜔i(k), ∀i ∈ F . (2)

To coordinate the arrival time, similar to 𝜃(t), interagent communication is modeled as a directed random graph 𝜌(t) =
( , 𝜌(t)), where the directed edge (𝑗, i) ∈ 𝜌 indicates that node i is able to access the states of node j. After completing
the orientation control objective, velocity control is activated to perform a simultaneous arrival where short-range sensors
(eg, camera or Lidar) can be used to estimate the range to the target. Because of the random communication network,
kinematics in (1) can be simplified and written in a stochastic manner as

Pi(k + 1) = Pi(k) − vi(k)Δ (3)

for k ≥ Ta, where Ta denotes the time instant that velocity control is activated and vi(k) is the input. Instead of using
the x and y position of the agents, only range information 𝜌i to the target is required in (3). In (3), Pi(k) and Pi(k + 1) are
corresponding random variables of 𝜌i(k) and 𝜌i(k+ 1), respectively. Similar to ̄𝜃 , let ̄𝜌 ≜ {1

𝜌, … ,S
𝜌} denote the sample

space of 𝜌 and ∗
𝜌 ∈ ̄𝜌 denote a particular element graph in which every agent is able to communicate with its immediate

neighbors. Different from the navigation stage where 2 leaders (ie, L = {1,N}) are required to determine the desired
circular area when approaching the target, only one informed agent (ie, leader) with the desired arrival time is required
to perform simultaneous target arrival. The following assumption is made to facilitate the subsequent development.

Assumption 4. The directed graph ∗
𝜌 ∈ ̄𝜌 has a directed spanning tree with leader Node 1 as the root so that Node 1

always has directed influence to every other follower agent, and Pr(𝜌(k) = ∗
𝜌) > 0, for all k.

3 BALANCED CONTAINMENT CONTROL

3.1 Control design
To equally space the agents in the angular sector (𝜃1, 𝜃N), the orientation controller 𝜔(k) ≜ [𝜔1(k), … , 𝜔N(k)]T ∈ RN is
designed as

𝜔(k) = −KgQD𝜃 (k), (4)
where Kg ∈ R+ is a control gain and Q ∈ RN×(N−1) and D ∈ R(N−1)×N are defined as

Q ≜

⎡⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0
1 −1 0 · · · ⋮
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 −1
0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎦
(5)

and

D ≜

⎡⎢⎢⎢⎣
−1 1 0 · · · 0
0 −1 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 · · · 0 −1 1

⎤⎥⎥⎥⎦ , (6)

respectively. Let the orientation difference between 2 adjacent agents be defined as

ei(k) ≜ 𝜃i+1(k) − 𝜃i(k) (7)

for i = 1, … ,N − 1. The term D𝜃(k) in (4) is the group orientation difference

e(k) = D𝜃(k), (8)

where e(k) ≜ [e1(k), … , eN−1(k)] ∈ RN−1. The matrix Q in (4) is designed to achieve consensus by allowing each follower
to update its own orientation by using the orientation differences from the adjacent nodes (ie, ei−1 and ei for node i). Since
the leaders are informed of the desired orientation to the target and have directed paths to the followers, the leaders can
influence the followers through local communication but not vice versa. Hence, matrix Q is designed with Q1i = 0 and
QNi = 0, for all i = 1, … ,N − 1, which indicates that 𝜃1 and 𝜃N are immutable from (4).
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The balanced deployment of the agents' orientations is achieved if each ei achieves consensus, ie, e1 = · · · = eN−1. Let
Ei(k) ∈ R be the corresponding random variable of ei(k) in (7) and Ek ≜ [E1(k), … ,EN−1(k)] ∈ RN−1 be the stacked
vector. Using (2) and (4), the deterministic system in (8) is written in a stochastic form as

Ek+1 = DΘk+1 =
(

IN−1 − KgΔDΞQ
)

Ek, (9)

where Ξ(k) ∈ RN×N is a diagonal random matrix with Ξii(k) = 𝛿i(k) and Ξij = 0 for ∀i ≠ j. Let Φ ≜ DΞQ ∈ R(N−1)×(N−1),
which is computed from (5) and (6) as

Φ =

⎡⎢⎢⎢⎢⎣
𝛿2 −𝛿2 0 · · · 0
−𝛿2 𝛿2 + 𝛿3 −𝛿3 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝛿N−2 𝛿N−2 + 𝛿N−1 −𝛿N−1
0 · · · 0 −𝛿N−1 𝛿N−1

⎤⎥⎥⎥⎥⎦
. (10)

From (10), it is clear that the random matrix Φ is a symmetric matrix with zero row sums, ie, Φ1N−1 = 0, where 1N−1 =
[1, … , 1]T ∈ RN−1. Moreover, since the diagonal entries are nonnegative, matrix Φ is a positive semidefinite matrix from
the Gersgorin circle theorem.36 Let Ψ ≜ IN−1 − KgΔΦ, then (9) can be represented in a compact form as

Ek+1 = ΨEk, (11)

where Ψ is a symmetric random matrix.

Definition 1. The agreement space  ∈ RN−1 is defined as the subspace spanned by {1N−1}, ie,  = {c1N−1|c ∈ R}.

Lemma 1. The agreement space  is the equilibrium set of (11). Moreover,
∑N−1

i=1 Ei(k) for ∀k is invariant.

Proof. Consider a random sequence {Ek} evolving according to (11). If Ek0 = c1N−1 for ∀k0 ∈ Z+, it must have
Ek0+1 = c1N−1 since

Ek0+1 = ΨEk0

=
(

IN−1 − KgΔΦ
)

c1N−1

= c1N−1,

(12)

where Φ1 = 0 is used. Similar to (12), it can be shown that ET
k+11N−1 = ET

k Ψ1N−1 = ET
k 1N−1, which indicates that∑N−1

i=1 Ei(k) is invariant (ie, an equilibrium set).

3.2 Convergence analysis
Since the consensus of all ei (ie, e1 = · · · = eN−1) indicates a balanced deployment of the agents, an almost sure conver-
gence of the orientation difference ei's (i = 1, … ,N − 1) to a common value in the agreements space  is established in
this section for the agreement protocol in (4) over the directed random graph 𝜃 . To facilitate the subsequent convergence
analysis, the definitions of almost sure convergence17 and supermartingale33 are introduced.

Definition 2. The random sequence {Z(k)} in RN−1 almost surely converges to an agreement Z∗ ∈  if

lim
k0→∞

Pr

{
sup
k≥k0

inf
Z∗∈

‖Z(k) − Z∗‖ > 𝜖

}
= 0, (13)

for every 𝜖 > 0. An almost sure convergence is also called convergence with probability one.

Definition 3. Let (Ω,  , P) be a probability space, where Ω denotes the sample space,  denotes the set of events,
and P denotes the probabilities associated with events. A filtration 0 ⊆ 1⊆ 2 · · · ⊆ n is an increasing subsequence
of sub-𝜎-algebras of  . A sequence of random variables Z(k) is adapted to a filtration k if Z(k) is k-measurable for
all k. The pair (Z,  ) is called supermartingale if, for all k ≥ 0,

E[Z(k)] < ∞ and E
[
Z(k + 1)|k

]
≤ Z(k), (14)

where E[Z(k)] denotes the expectation of the random variable Z(k) and E[Z(k + 1)|k] denotes the conditional
expectation of Z(k + 1) under the condition that the event k occurs.
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The supermartingale sequence {Z(k)} in (14) indicates that limk→∞Z(k) exists and is finite with probability 1. In
addition, if the sequence {Z(k)} is a nonnegative supermartingale, Z(k) converges with probability 1 to a limit.37

Let B ≜
[

b1 b2 · · · bn−2
]
∈ R(N−1)×(N−2) denote a matrix, where bi ∈ RN−1(i = 1, … ,N − 2) and 1√

N−1
1N−1 form an

orthonormal basis of RN−1, with properties BT1N−1 = 0, BTB = IN−2 and

BBT = IN−1 −
1

N − 1
(
1N−11T

N−1
)
. (15)

The error vector 𝜉k ∈ RN−2 at time tk is defined as

𝜉k ≜ BTEk. (16)

For the case where 𝜉k and Ek are deterministic states in (16), 𝜉k = 0 indicates that the consensus is achieved for all entries
in Ek. Since 𝜉k and Ek are random variables in this work, the following Lemma 2 and Theorem 1 indicate that 𝜉k → 0
almost surely (ie, with probability one), which indicates that all Ei(k) achieve consensus almost surely.

Lemma 2. An almost sure convergence of the random sequence {Ek} to a value in the agreement space  in (13) is
equivalent to

lim
k0→∞

Pr

{
sup
k≥k0

‖𝜉k‖ > 𝜖

}
= 0, (17)

for every 𝜖 > 0.

Proof. Given a consensus value c1N−1 ∈  for {Ek}, where c ∈ R is a constant, (17) is equivalent to (13) if

‖𝜉k‖ = inf
c1N−1∈

‖Ek − c1N−1‖ .

Note that ‖Ek − c1N−1‖2 = ET
k Ek − 2c1T

N−1Ek + c2(N − 1)

= (N − 1)

(
c −

1T
N−1Ek

N − 1

)2

+ ET
k Ek −

(
1T

N−1Ek
)2

N − 1
,

which is minimized when c = 1T
N−1Ek

N−1
. That is,

inf
c1N−1∈

‖Ek − c1N−1‖ =
√

ET
k Ek −

1
N − 1

(
1T

N−1Ek
)2
. (18)

From (15) and (16) ‖𝜉k‖2 = ET
k

(
IN−1 −

1
N − 1

(
1N−11T

N−1
))

Ek

= ET
k Ek −

1
N − 1

(
1T

N−1Ek
)2
,

which is equivalent to (18).

Theorem 1. Given a directed random graph 𝜃 composed of N agents and provided that Assumption 2 holds and Kg
in (4) is selected sufficiently small such as KgΔ <

1
2

, the controller designed in (4) yields an almost sure orientation
convergence to a balanced distribution in the desired angular sector (𝜃1, 𝜃N), in the sense that e1 = · · · = eN−1 = 𝜃N−𝜃1

N−1
almost surely as k → ∞.

Proof. Consider the function Vk ∶ RN−2 ×RN−2 → R defined as

Vk ≜ 𝜉T
k 𝜉k, (19)
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where the random variable 𝜉k is defined in (16). Let

g(k) ≜ E
[

Vk+1 − Vk| 𝜉k = BTe(k)
]
,

where E
[
Vk+1 − Vk|𝜉k = BTe(k)

]
represents the conditional expectation of Vk+1 − Vk given that the random variable

𝜉k = BTe(k), where e(k) is the deterministic state at time k. Using (11) and (16),

g(k) = E

[
𝜉T

k+1𝜉k+1 − 𝜉T
k 𝜉k

||| 𝜉k = BTe(k)
]

= e(k)T
E
[
ΨTBBTΨ − BBT] e(k).

(20)

The term ΨTBBTΨ − BBT in (20) can be simplified by using the definition of Ψ and the properties of B in (15) as

ΨTBBTΨ − BBT = ΥΦ, (21)

where Υ ≜ (−2IN−1 + KgΔΦT)KgΔ ∈ R(N−1)×(N−1).
From the definition of Φ in (10), the ith row of Υ is specified by Υi,i = (−2 + KgΔ(𝛿i + 𝛿i+1))KgΔ, Υi,(i−1) = −K2

gΔ2𝛿i,
Υi,(i+1) = −K2

gΔ2𝛿i+1, and Υi,j = 0 for j ∉ {i − 1, i, i + 1}. By the Gersgorin circle theorem,36 the eigenvalues {𝜆i} of Υ
satisfy |||𝜆i −

[
−2KgΔ + K2

gΔ2 (𝛿i + 𝛿i+1)
]||| ≤ K2

gΔ2(𝛿i + 𝛿i+1).

Thus,

𝜆i ≤
(
−2 + 2KgΔ (𝛿i + 𝛿i+1)

)
KgΔ

≤
(
−2 + 4KgΔ

)
KgΔ.

(22)

From (22), a sufficient condition for Υ to be negative definite is KgΔ < 0.5. Since Φ is positive semidefinite and ΥΦ is
a symmetric matrix,38 then ΥΦ is a negative semidefinite matrix provided that KgΔ < 0.5.

Using (21), the term g(k) in (20) can be rewritten as

g(k) = e(k)T
E [ΥΦ] e(k). (23)

Since ΥΦ in (21) is a negative semidefinite matrix, the random sequence {Vk} is a supermartingale from
Definition 3. By invoking Theorem 1 of chapter 8 in the work of Kushner,37 e(k)TE [ΥΦ] e(k) → 0 as k → ∞ with
probability 1. Note that

E [ΥΦ] =
M∑

i=1
(ΥΦi) qi,

where M is the cardinality of ̄𝜃 , qi denotes the probability that the graph i
𝜃

exists in ̄𝜃 , and Φi denotes the state
matrix associated with i

𝜃
satisfying Φi1N−1 = 0 from (10). Let q∗ and Φ∗ denote the probability and the state matrix

associated with the graph ∗
𝜃
, respectively. The definition of ∗

𝜃
ensures that the null space of Φ∗ is the agreement

space  only. Since ∗
𝜃
∈ ̄𝜃 exists with q∗ > 0 from Assumption 2, e(k)TE [ΥΦ] e(k) → 0 indicates that {Ek} → 

almost surely, which indicates that a consensus is achieved in the sense that E1(k) = · · · = EN−1(k) almost surely as
k → ∞. Given that

∑
Ei is invariant from Lemma 1 and ei = 𝜃i+1 − 𝜃i in (7), each agent will almost surely converge to

the equilibrium point,

𝜃2 − 𝜃1 = · · · = 𝜃N − 𝜃N−1 = 𝜃N − 𝜃1

N − 1
,

provided that 𝜃1 and 𝜃N are prespecified and immutable.

Remark 1. The controller in (4) is not limited to a fixed number of agents. Because of the decentralized nature of
(4), where each agent updates its orientation by communicating with the adjacent nodes, if any agents are added or
removed, the remaining agents will correspondingly alter their orientations to achieve balanced spacing.

Remark 2. The convergence rate and convergence time of consensus are investigated in the works of Olshevsky and
Tsitsiklis.39,40 Given a network of n nodes, let s(t) ≜ [sT

1 (t), … , sT
n (t)]T represent the stacked node states, where si
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represents the state of node i, s(0) represents the initial states, and s∗ = limt→∞s(t) denotes the final consensus. The
convergence time 𝜏 (n, 𝜖) of consensus is defined on the basis of the system initial error e𝜏(0) in the result39 as

𝜏 (n, 𝜖) = min
{

t ∶
‖e𝜏(t)‖2‖e𝜏(0)‖2

≤ 𝜖, s(0) ≠ s∗
}

, (24)

which indicates the first time t when each node is within an 𝜖-neighborhood of the final consensus. In (24), e𝜏(t) ≜
s(t) − s∗, e𝜏(0) ≜ s(0) − s∗, and 𝜖 ∈ R+ denotes the desired error bound. The worst-case consensus convergence time
is developed for the particular case of fixed line graphs, where the nodes are connected sequentially like a line.40 In
this paper, the closed-loop system in (11) is indeed a consensus algorithm over a line graph since the matrix Ψ in (11)
indicates that each node updates its state by using its own states ei and its immediate neighbors' states (ie, ei−1 and
ei+1). If there exists an interval IG ∈ Z+ such that, for all k, the union of the graphs u =

(
 ,

⋃IG−1
m=0 (k + m)

)
is a

connected line graph, the worst-case convergence time of consensus is developed as40𝜏(n, 𝜖) ≥ n2IG
30

log 1
𝜖
. Because of

the considered Markov process, there does not exist a fixed IG in this paper such that u is guaranteed to be a connected
line graph. However, on the basis of Assumption 2, there will always be an interval IG such that u is connected with
arbitrarily high probability qI because increasing IG increases the probability that at least one interval contains the
connected graph ∗

𝜃
. For instance, in the case that the channels are independent across time intervals, a sufficient

IG can be selected to satisfy qI ≥ 1 − [1 − Pr(𝜃(k) = ∗
𝜃
)]IG . If a consensus is required to be achieved with a desired

probability qd, the worst-case convergence time 𝜏(n, 𝜖) indicates that convergence will happen with probability qd
if there exist more than n2

30
log 1

𝜖
connected intervals of length IG, where IG can be selected sufficiently large on the

basis of the transition probabilities for the agent dynamics. Again, if the agents states are independent across time, a
sufficient value of IG can be selected to satisfy[

1 −
[
1 − Pr

(
𝜃(k) = ∗

𝜃

)]IG
] n2

30
log 1

𝜖

> qd. (25)

Since the group size n, the tolerant error 𝜖, the desired consensus probability qd, and Pr(𝜃(k) = ∗
𝜃
) are known

initially and the interval IG can be selected from (25), limited global information is required to obtain the worst-case
convergence time.

Since an only almost sure asymptotic convergence is established in Theorem 1, orientation control cannot be completed
in finite time. Practically, the worst-case convergence time 𝜏(n, 𝜖) discussed in Remark 2 provides an estimated time frame
for orientation control within a predefined error bound 𝜖. Such a time frame 𝜏(n, 𝜖) indicates that, given an operating
time no shorter than 𝜏(n, 𝜖), reaching the 𝜖-neighborhood of equal relative orientation between agents is guaranteed.

4 COOPERATIVE TIMING

4.1 Control design
In this section, a consensus-based coordination algorithm is developed for the multiagent system to simultaneously arrive
at the prespecified target. The available information exchange between agents on 𝜌(t) = ( , 𝜌(t)) is captured by the
adjacency matrix A = [aij]N×N, where aij = 1 if there exists a directed edge from node j to i and aij = 0 if otherwise. Note
that v1 acts as the root node in 𝜌 with immutable states (ie, the desired arrival time) from Assumption 4, which indicates
that a1j = 0 for all j = 1, … ,N. Similar to 𝜃 , the graph 𝜌(k) evolves according to the 2-state Markov process, and 𝜌(k)
remains constant over the time interval [tk, tk+1). Because of the random variable 𝛿i associated with agent i, the existing
edge between agent i and its neighbors j can be either connected or disconnected at tk, and the time-varying neighbor set
of agent i is denoted by i(k) = {v𝑗|(vi, v𝑗) ∈ 𝜌(k)}.

As described in Section 3.1, the orientation controller in (4) is applied to equally space the agents in the desired sector.
When each agent has converged to the desired orientation (ie, t ≥ 𝜏 (n, 𝜖) as discussed in Remark 2), which indicates that
the agents are in a balanced deployment, the agents are driven along a line towards the target. Once the agents are close
enough to estimate the distance to the target (ie, range information becomes available), their speed with neighboring
agents are coordinated over the random communication network 𝜌(t) to perform simultaneous arrival.

Let 𝜏 i(k) and 𝜌i(k) be the estimated arrival time for agent i and the distance to the target at tk, respectively. Once the
agents are in a balanced deployment and in the neighborhood of the target, it is assumed that the target can be sensed by all
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agents (ie, 𝜌i(k) is available to followers),‡ cooperative timing can be achieved by communicating 𝜏 i(k) with neighboring
agents and controlling the velocities of the agents for simultaneous arrival. Let 𝜏(k) ≜

[
𝜏1(k), … , 𝜏N(k)

]T ∈ RN be the
stacked deterministic state and Γk ≜

[
Γ1(k), … ,ΓN(k)

]T ∈ RN be the corresponding random variable. Because of the
random failure of each agent in communication with its neighbors, the estimated arrival time for each agent is updated
according the following stochastic system:

Γi(k + 1) =
⎛⎜⎜⎝1 − K𝜏Δ𝛿i(k)

∑
𝑗∈i(k)

ai𝑗

⎞⎟⎟⎠Γi(k) + K𝜏Δ𝛿i(k)
∑

𝑗∈i(k)

ai𝑗Γ𝑗(k), (26)

where K𝜏 is the control gain, and the velocity of agent i is adjusted by

vi(k) =
𝜌i(k)
𝜏i(k)

. (27)

To show the arrival time consensus, let the disagreement 𝜁 (𝜏(k)) ∈ R at tk be defined as

𝜁 (𝜏(k)) ≜ 𝜏(k) − 𝜏(k), (28)

where 𝜏(k) ≜ maxi=1,…N 𝜏i(k) and 𝜏(k) ≜ mini=1,…N𝜏i(k). Let 𝜁k ∈ R be the corresponding random variable of 𝜁 (𝜏(k)) in
(28). If the random sequence {𝜁k} converges to zero almost surely, it is clear from (28) that the agents will also achieve
arrival time consensus almost surely.

4.2 Convergence analysis
To facilitate the subsequent lemma, the definition of a convex hull43 is established in Definition 4.

Definition 4. For a set of points x ≜ {x1, … , xn}, the convex hull Co(x) is defined as the minimal set containing all
points in x, satisfying that Co(x) ≜

{∑n
i=1 𝛼ixi ||xi ∈ x, 𝛼i > 0,

∑n
i=1 𝛼i = 1

}
.

Lemma 3. The disagreement 𝜁 (𝜏(k)) is nonincreasing (ie, 𝜁 (𝜏(k + 1)) ≤ 𝜁 (𝜏(k))) if the state 𝜏(k) evolves according
to (26).

Proof. The stochastic system in (26) can be written in a compact form as

Γk+1 = TΓk. (29)

In (29), T = [Ti𝑗] ∈ RN×N is the state transition matrix with diagonal entries

Tii ≜ 1 − K𝜏Δ𝛿i
∑
𝑗∈i

ai𝑗

and off-diagonal entries
Ti𝑗 ≜ K𝜏Δ𝛿iai𝑗

if 𝑗 ∈ i and Tij = 0 if otherwise. Note that the off-diagonal entries Tij are nonnegative, and the diagonal entries
Tii are positive if K𝜏 is selected sufficiently small such that K𝜏Δ𝛿i

∑
𝑗∈i

ai𝑗 < 1. Moreover, each row sum in T equals
to one from its definition. Hence, for each agent i, given that Γi(k) = 𝜏 i(k), where 𝜏 i(k) is an arbitrary deterministic
state at tk, the next time state 𝜏 i(k + 1) is a convex linear combination of its current state 𝜏 i(k), and its neighbors'
current states 𝜏 j(k) for 𝑗 ∈ i(k) from (29) and Definition 4. The convex linear combination indicates that 𝜏 i(k +
1) will move into the convex hull formed by 𝜏 i(k) and 𝜏 j(k), 𝑗 ∈ i(k), resulting in a nonincreasing disagreement
(ie, 𝜁 (𝜏(k + 1)) ≤ 𝜁 (𝜏(k))).

Theorem 2. Provided that Assumption 4 is satisfied, the stochastic system in (26) will achieve arrival time consensus
almost surely.

‡For example, the range information 𝜌i(k) can be estimated by using the approaches developed in the works of De Luca et al41 and Dani et al42 if each
agent knows its velocity and is equipped with a passive range sensor such as a camera.
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Proof. Given the disagreement 𝜁 (𝜏(k)) in (28), consider a function 𝑓 (k) ∈ R as

𝑓 (k) ≜ E
[
𝜁k+1 − 𝜁k|Γk = 𝜏(k)

]
= E

[
𝜁k+1|Γk = 𝜏(k)

]
− 𝜁 (𝜏(k)).

(30)

Using (29), the conditional expectation E[𝜁k+1|Γk = 𝜏(k)] in (30) can be rewritten as

E
[
𝜁k+1|Γk = 𝜏(k)

]
=

S∑
i=1

𝜁 (𝜏(k + 1))qi =
S∑

i=1
𝜁 (Ti𝜏(k))qi,

where S is the cardinality of ̄𝜌, qi denotes the probability of the graphi
𝜌 exists in ̄𝜌, and Ti denotes the state transition

matrix associated with i
𝜌. As indicated in Lemma 3,

𝜁 (Ti𝜏(k)) ≤ 𝜁 (𝜏(k)) , (31)

for all i
𝜌 ∈ ̄𝜌. As shown in the result,44 consensus is achieved for the particular directed graph ∗

𝜌 ∈ ̄𝜌 that has
a directed spanning tree as described in Assumption 4, which indicates that the disagreement decreases strictly (ie,
𝜁 (T∗𝜏(k)) < 𝜁 (𝜏(k))) for 𝜁 (k) ∉ , where T∗ denotes the state transition matrix associated with ∗

𝜌. Since Pr(𝜌(k) =
∗
𝜌) > 0 from Assumption 4, the results in (31) can be used to prove that 𝜁 (Ti𝜏(k)) < 𝜁 (𝜏(k)) in expectation; hence, the

random sequence {𝜁k} is a supermartingale. Invoking theorem 1 of chapter 8 in the work of Kushner37 indicates that
𝜁 (Γk) → 0 almost surely. That is, consensus is achieved almost surely in the sense that 𝜏1 = 𝜏2 = · · · = 𝜏N. Since Node 1
acts as the root node and cannot be influenced by other agents as described in Assumption 4, the arrival time of all
agents will achieve consensus to the desired arrival time of 𝜏1, and the velocity of each agent is adjusted according to
(27) for simultaneous arrival.

In this work, only 1 agent is informed of the desired arrival time, and the other agents are required to arrive at the target
exactly at the same arrival time of the informed agent. If no agents are informed of a required arrival time, alternative
approaches such as max-consensus or min-consensus in the work of Nejad et al45 can be extended to a stochastic setting
and applied for simultaneous arrival. Particularly, each agent may have an estimated arrival time. Rather than arriving
at a predefined time determined by a leader node, consensus could be reached on a minimum or maximum estimated
arrival time of the group.

Remark 3. The consensus convergence time over a directed spanning tree is investigated in the work of Olshevsky and
Tsitsiklis39 and the references therein. Following a similar procedure in the aforementioned work39 and the discus-
sion in Remark 2, despite the asymptotic convergence result proved in Theorem 2, the worst-case convergence time
𝜏′(n, 𝜖) for a given error bound 𝜖 can be developed for the directed tree graph 𝜌(t) considered in the current work.
𝜏(n, 𝜖) and 𝜏′(n, 𝜖) together provide a time frame for completing the task within a desired error bound 𝜖 (ie, within an
𝜖-neighborhood of the final consensus value). As discussed in the aforementioned work,39 the error bound 𝜖 indicates
a shrink factor from the initial conditions (ie, ||e𝜏(t)||2 ≤ 𝜖||e𝜏(0)||2 in (24), for all t ≥ 𝜏(n, 𝜖)). Hence, to achieve the
desired error bound 𝜖, the total amount of operation time should be no shorter than 𝜏′(n, 𝜖) + 𝜏(n, 𝜖). In addition, to
ensure that the agents have sufficient operation time to complete the orientation control and simultaneous arrival up
to a given error bound 𝜖, the agents are assumed to be driven from a distant starting point from the target such that
the total amount of operation time is no shorter than 𝜏′(n, 𝜖) + 𝜏(n, 𝜖).

Remark 4. Since range information is not exchanged between agents, collision avoidance within agents is not con-
sidered in this work. In our recent work,46 a potential field-based approach is investigated for a multiagent system to
avoid collision with other agents and/or stationary obstacles when performing collective tasks. If provided with range
information to nearby agents or stationary obstacles, the current work could be extended for collision avoidance on
the basis of the outcome of the aforementioned work.46

Remark 5. For applications that require simultaneous arrival outside of a target's sensing capabilities, our work can
also be extended to perform simultaneous arrival at the target's sensing boundary. Specifically, let rd ∈ R+denote the
radius of the target sensing neighborhood. Recall that 𝜌i is the distance to the target, which is available to the agent
i when the agents are close to the target. Simultaneous arrival at the boundary of the target neighborhood can be
achieved by simply replacing 𝜌i with 𝜌i − rd.
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FIGURE 2 Plot of agent trajectories with squares indicating their initial positions [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Evolution of agent orientations [Colour figure can be viewed at wileyonlinelibrary.com]

5 SIMULATION

Numerical simulation results are provided to demonstrate the performance of the developed controller for a group of
10 agents that are tasked to be equally spaced and move within a prespecified circular sector to simultaneously arrive
at the target. The target is located at the origin and the angular sector is specified by 𝜃1 = 7𝜋

12
and 𝜃10 = 5𝜋

6
. Zero-mean

random measurement noise varying between
[
−0.01, 0.01

]
rad and

[
−0.5, 0.5

]
m are added to the orientation (ie, 𝜃i) and

range (ie, 𝜌i) measured by the leaders and followers, respectively, to demonstrate the robustness of the control algorithm.
A 2-state Markov process is applied to model the random failure of agents communicating with neighboring agents.
The agents are assumed to move with constant velocity during orientation control. Once the balanced deployment is
achieved by using (4) and the target range information is available to followers, velocities are adjusted according to (27)
for simultaneous arrival. On the basis of the coordinate transformation xi = 𝜌i cos(𝜃i − 𝜋

2
) and 𝑦i = 𝜌i sin(𝜃i − 𝜋

2
), where 𝜃i

is defined in Figure 1, the agent trajectories in the Cartesian coordinate system are shown in Figure 2, where the initial
positions are represented by squares and the trajectories are represented by solid lines. The evolution of orientations for
each agent is plotted in Figure 3, which indicates that the orientations of the group are equally spaced in the desired
sector ( 7𝜋

12
,

5𝜋
6
). Figure 4 indicates that simultaneous arrival is achieved, where all agents reach a consensus to the desired

arrival time of Agent 1. As shown in Figure 4, agents start to coordinate their velocities for simultaneous arrival after
completion of orientation control at t = 12.5 seconds (ie, ||e(t)−e∗|| < 𝜖 for ∀i ∈ ). To show the random failure of node vi

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Evolution of estimated arrival time of each agent. The dashed line indicates the desired arrival time determined by Agent 1.
Velocity control is activated at t = 12.5 after the orientation control is completed [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Percentage of time that each nodes connects with its neighboring nodes

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

46.6% 53.3% 52.8% 49.1% 50.2% 49.7% 48.1% 52.5% 50.6% 49.7%

in communication with its neighbors, the percentage that each node maintains a connection with its neighboring nodes
is provided in Table 1.

6 CONCLUSION

This paper examines the cooperative timing problem for a multiagent system over a random communication network.
The underlying random network is assumed to evolve according to a 2-state Markov model. In contrast to most existing
results that either require deterministic networks or assume random networks that evolve independently with their pre-
vious states, a Markov process is employed in the current work that considers the fact that the current network states
can be highly dependent on its previous states. The considered Markov process–based model is true for a large class of
real-world networks and practical connection models (eg, modeling the effects of channel outages caused by multipath
propagation). Additional development is also required to extend the current result to consensus problems with general
aperiodic sampling such as switching topologies or time-varying topologies. Compared with most results in containment
control that only drive the followers' states to the desired region determined by the leaders, a balanced containment con-
trol algorithm is developed to not only drive the followers to the desired region but also equally space the agents in the
desired region when driving the agents towards the target. A consensus algorithm is designed for agents to coordinate
their velocities by reaching almost sure consensus on the arrival time. Following a recently developed finite-time consen-
sus framework,47 future work will consider extending the current consensus result to almost sure finite-time consensus
to enable finite-time simultaneous target arrival. Additional development is also required to extend the current results to
other tasks with multiple dynamic leaders such as flocking toward a common heading or coverage control with agents
equally deployed in an area of interest, where the existing results48 can be useful on the latter generalization to multiple
dynamic leaders.
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